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Abstract

The textile plot is a parallel coordinate plot in which the ordering, locations and
scales of the axes are simultaneously chosen so that the connecting lines, each of
which represents a case, are aligned as horizontally as possible. Plots of this type
can accommodate numerical data as well as ordered or unordered categorical data,
or a mixture of these different data types. Knots and parallel wefts are features of
the textile plot which greatly aid the interpretation of the data. Several practical
examples are presented which illustrate the potential usefulness of the textile plot
as an aid to the interpretation of multivariate data.

1 Introduction

Parallel coordinate plots have become a routine device with which to ex-
plore high dimensional data. This type of plot was originally proposed by
Inselberg [10] as a tool for visualising high dimensional geometries using a
two-dimensional display. Wegman [20] developed it as a tool for visualising
high dimensional data. The basic idea of the parallel coordinate plot is to
place axes, representing each observed variable or attribute, in parallel in a
two dimensional display. For a given data point observed in a high dimen-
sional space, its associated coordinates on adjacent axes are then connected
by straight lines. Thus, each case is represented in the display by a trajectory
made up of a series of connected straight lines. The parallel coordinate plot is
one possible way of visualising high-dimensional data.
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Fig. 1. Parallel coordinate plot for the iris data.
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Fig. 2. Textile plot for the iris data.

Figure 1 shows an example of a parallel coordinate plot for Fisher’s famous iris
data [1]. Although this data set involves only relatively few dimensions, we use
it as an initial example because of its simplicity and familiarity to statisticians.
We have simply assigned the numbers 1 to 3 to the different species arranged in
alphabetical order, namely Setosa, Versicolor and Virginica, since no definitive
specification of how this should be done is given in the definition of the parallel
coordinate plot. This lack of specification within the definition of the parallel
coordinate plot tends to lead to a less than optimal display of categorical data.
Moreover, we consider that displaying just the name of each attribute as the
only written information makes the plot far too terse in the sense that it does
not include important information that can be helpful to the user in their
interpretation of the data.

The textile plot has been designed with problems such as these in mind. And



we would contend that the textile plot in Figure 2 provides an improved graph-
ical representation of the data when compared with the parallel coordinate plot
in Figure 1. This is because the ordering (from left to right) of the axes, and
their (vertical) locations and their scales, are simultaneously chosen so that
the connecting lines are aligned as horizontally as possible. As a consequence
of introducing an objective criterion for determining the ordering of the axes
and their locations and scales, appropriate numerical values can be assigned
to the different categories associated with categorical data. For example, in
Figure 2, Versicolor is positioned closer to Virginica than to Setosa. Another
consequence is that the direction of the scale used to order “high” and “low”
values on an axis can vary between axes. Thus, for example, in Figure 2, the
direction of the scale used on the axis for Sepal Width runs opposite to that
of the others.

Additional information is also depicted within the textile plot. As commented
previously, the coordinates associated with the data points are indicated on
the axes. However, where there is a point that is repeated, a circle is included
within the plot with an area that is proportional to the number of replicates
associated with the point in question. For the iris data, almost all of the
data values are replicated due to the fact that a precision of just one decimal
place was used when recording the values of the four continuous variables
measured. Overall, the textile plot is a better representation of the iris data
than the corresponding parallel coordinate plot as it provides a clearer and
more comprehensive representation of the data. For example, the well known
fact that Petal Length and Petal Width are important indicators of Species is
readily seen from the textile plot, whereas this fact is not so easily established
from a consideration of the parallel coordinate plot.

The name “textile plot” was derived by analogy to the process of fabric pro-
duction in which warp and weft yarns are woven. A fabric is considered to
be a “good” one if its weft yarns run as horizontally as possible. Because of
the use of the horizontalisation criterion, the textile plot not only makes it
easier for the user to understand the relationships that might exist between
adjacent axes (i.e. variables or attributes), but it also allows one to identify
potential linear relationships or orthogonalities that might exist between data
vectors. Of course, such features are heavily dependent upon a careful choice
of ordering of the axes. Furthermore, ordered and unordered categorical data
can be displayed on the plot as well as numerical data with missing values.

Because of its construction, the textile plot is related to the optimised parallel
coordinate plot proposed by Michailidis and de Leeuw [12] developed in the
field of homogeneity analysis [7] and used for displaying categorical data. We
will discuss the relationship between these two plots in greater detail in Section
7. Displaying categorical data using a parallel coordinate plot is also discussed
in Rosario et al. [16].



2 Determination of locations and scales

In this section, we consider the location and scale transformation of the data
where the latter would have been preprocessed by applying a suitable non-
linear transformation prior to the location and scale transformation.

First we will explain the criterion we use for determining the locations and
scales of the axes. Let x; denote the vector of n observations on attribute
Jj (7 = 1,...,p). Then each row of the data matrix (xy,...,x,) gives us a
p-dimensional observation. If the data vectors i, ..., x, are all numeric, then
they are simply transformed into p coordinate vectors

Y=o+ 0y, j=1,....p, (1)

where 1 is a vector of ones, which results in a textile plot with a common
coordinate system. The vector y; = (yj,..-,¥n;)" gives us the coordinates
of the n observations on the jth axis. The degree to which each connecting
line on the textile plot is horizontal can be measured by the sum of squared
deviations from a horizontal line at level &;, that is

(yij — &)

p
=1

J

for the 7th line connecting the points at the levels y;1, ..., y;p. Then our crite-
rion would be to choose a; and §;, j =1,...,p, so that

D> (v — &)= lly — €I
i=1j=1 j=1

is minimised. The vector & also has to be chosen to minimise the sum of
squares since the levels &;, ¢ = 1,...,n are unknown a priori.

This approach is in contrast with the parallel coordinate plot where

x; — min(xz;)1

yj: jzla"'apv

max(z;) — min(x;)’

since the locations and scales are chosen axis by axis so that the coordinate
points fill up the range of each axis.

In the textile plot, a categorical data vector x; is first encoded into a data
matrix X; by an appropriate set of contrasts [3] and then transformed into a
numerical coordinate vector,

y; = a;1 + X;0;.



The location parameter «; and the scale parameter vector 3; are chosen si-
multaneously, using the same criterion as before. The coordinates for the three
categories of Species on the second axis in Figure 2 are determined in this way.
It is worthy of note that the resulting coordinate vector y; is independent of
the choice of the set of contrasts.

We hereafter assume the following for simplicity of presentation.

Assumption 1 None of the data vectors nor the cases contains just missing
values.

Assumption 2 No data vector consists of just a single value.

Assumption 3 The number of variables is larger than or equal to the number
of cases.

These assumptions do not cause any practical problems because we can delete
any data vectors or cases which violate Assumption 1 beforehand, and set
B; = 0 or B; = 0 for any data vectors that violate Assumption 2. Such a
modification does not affect the choice of locations and scales for any other
data vectors.

We first consider the case where all data vectors are numeric and generalise
the results to other cases in subsequent subsections.

2.1 Numerical Data

In the textile plot, the sum of squared deviations is not properly defined if
there are missing values in the data. To reflect the existence of a missing value,
we introduce the weight vectors w;, j = 1,...,p whose elements of zero or one
are used to indicate missing values in «;, 7 = 1,...,p. That is, the 7th element
w;; of w; is 0 if the corresponding element x;; of x; is missing; otherwise w;; is
1. Using the notation ||z||? = >, v;z? for the norm with a weighting vector
v, we can formally define the sum of squares

p
S (e, 8,6) =>_ lly; — &llz, (2)
j=1
where a = (g, ..., )7 is the vector of location parameters and 8 = (34, ..., 5,)"

is the vector of scale parameters. Then, the use of such a weighted norm im-
plies that missing values do not contribute to the sum of squared deviations,
but the missing information itself is retained for display on the textile plot.

By using the notation @ - v and /v to denote an element-wise product and
the division of the vectors & and wv, it is readily seen that the solution & =



m = Z§:1 w; - y;/w for € minimises S%(a, B, £) since

(c,3,€) = Z ly; = mll, + 22 Im — €l (3)
j=1

where w = Z§:1 w;. Throughout the paper we will refer to m as the mean
vector since it is a vector of the mean positions for the connecting lines within
the textile plot. We would point out to the reader that m is not the vector of
the means of each coordinate vector.

We need a constraint on a and 3 so as to avoid trivial solutions like a = 3 =
0. A natural constraint would be that the total dispersion of the points on the
textile plot, >¥_; [|y; — 9.;1|3,, remains constant. For example, that it equals
the effective number of the points N = Y7, 38 wy;. Here 7.5 = w] y; /17w
is the mean of the coordinate vector y;. This constraint is equivalent to
>ii(Yi; — §..)> = N when there are no missing values, and .. = >;; y;;/N.

The decomposition

p
S*(e, B,m) Z ly; —mll3,

P P
=>_lly; = v51ll, + 2119511, — Imle,
j=1 j=1

indicates that all that is required is to find o and 8 which minimise
¢ 2 2
B) =>_1191llw, — IIm
j=1
under the constraint

p
>y — 715, = N (4)
7=1

A solution to this constrained minimisation problem always exists since f(a, 3)
is bounded below by —N.

The function f(e, 3) can be rewritten as

f(a,B) = a’Aja —2a" A8 + BT A%B, (5)

where

All:_(w (wk’/w) 7k 177p)+d1ag(1TwJ? jzl""’p)7
A12=( T(fw}c xp/w); j,k=1,... )—diag('ij:l:j;j:L...,p),



and

Agp = —((’wj cay) ! (wy - @ /w); k=1, 7p)
t+diag((w] ®;)*/1Twy; j=1,...,p).

Constraint (4) can also be rewritten as
B™BB =N (6)

by introducing the matrix B = diag(||x; — :f.jlﬂfvj; j = 1,...,p), where
T.; = w, «;/1"w; is the mean of the data vector ;.

Then, a solution & is a solution of the equation
Ané = ApB,

provided that B is a solution, since constraint (6) is only effective for the
parameter vector 3. An explicit expression for & is

é = AEAH,@ + (I — Aii_lAll)Z, (7)

where A7j; is the Moore-Penrose inverse [15] of Aj; and z is an arbitrary
p-dimensional vector.

The value of the function f(a,3) at @ = & and 3 = ,5’ becomes

fle, B) = BT(_A%;AEAlQ + A22)B —22"(I— AEAH)TAHB
= BT(_A{QAﬁAlQ + A22),é, (8)
since
(A12B) (I— AfjAn)z = (Ana) (I- AfjAy)z =0.
Therefore, the solution B is an eigenvector of A = AT AT A — Ay, with
respect to B associated with the largest eigenvalue.

Proposition 1 For given numerical data vectors x;, j = 1,...,p, which sat-
isfy Assumptions 1 and 2, a solution which minimises S*(a, 3, m) under the
constraint (4) is given by & and B where & = A}, A8+ (1—Af Az for an
arbitrary p-dimensional vector z and B is that eigenvector of A with respect
to B associated with the largest eigenvalue such that BTBB = N.

Note that the solution referred to above is not necessarily unique. However,
if rank(A1;) = p — 1, then the choice of a is essentially unique and can be
written as & = cl —l—AﬂAmB for an arbitrary global constant c. This is because
{z; Aj1z = 0} = span{1} if rank(A,;) = p — 1. Note here that A;;1 =0



always holds true. The choice of B is unique as far as the eigenvector of A
with respect to B associated with the largest eigenvalue is unique.

Proposition 1 becomes simpler if there are no missing values.

Corollary 1 If there are no missing values in the data, then a solution is
given by

Oé]:a()_'fjﬁj) ]:17"'7pa

and
327777]:]# » Dy
S A Y
where aq s an arbitrary constant and v = (y1,...,7%)" is the eigenvector

of the sample correlation matriz of x; associated with the largest eigenvalue,
satisfying ||v||> = N = np.

The proof is given in Appendix A.

2.2 Numerical and Categorical Data

If © = (z1,...,7,)7 is a categorical data vector with ¢ categories, then the

element of the coordinate vector y takes only ¢ different values on an axis.
By denoting such values as v = (71,...,7,)", the coordinate vector can be
written as

y =17, (9)
where the (i, k)th element z; of an n x ¢ indicator matrix Z is 1 if x; is equal
to the kth category; otherwise z;; is 0. If an n x (¢ — 1) matrix

X =7ZC

is defined by a ¢ x (¢—1) contrast matrix C such that rank(C) = ¢—1 and the
columns are all linearly independent of 1, it is easily seen that Range(Z) =
Range{Z(1,C)} = Range{(1,X)}. Therefore (9) can be rewritten as

y=ol+X3 (10)

by replacing v by the parameters a and 3. The discussion above implies
that, for the case of a categorical data vector, it is enough to encode x to
X through Z and then apply the same minimisation criterion as used for a
numerical data vector. It is clear that the resulting coordinates 4 of the ¢
categories are independent of the choice of the contrast matrix C.

Example 1 The data vector Species & = (Setosa, . .., Setosa, Versicolor, . . .,
Versicolor, Virginica, . . ., Virginica)® in the iris data is categorical. The coor-



dinate vector is represented as y = al + X103 with

00
Xi=|10],
01

when the treatment contrast C = (O,I)T is used, where 3 = (81, 32)%. Thus
the coordinate vector is parametrised as y = (o, ...,a,a+ f1,...,a+ [F,a+

52,...,a+52)T.

To cover cases where both numerical and categorical data vectors exist, we
consistently use the matrix notation X; in place of the numerical data vector
x; by letting ¢; = 2. Such matrices {X;, j = 1...,p} are combined into
an n x @ data matrix X = (Xy,...,X,) where Q@ = >%_,(¢; — 1). Then by
using the notation v(.#") or M(.#, %) for the sub-vector or the sub-matrix
specified by index sets # and .Z [8], we can generally write the coordinate
vector as
Yy =a;1+X;8(%), j=1,....p,

where a = (ay,...,q,) and BT = (34, .., Bg) are scale and location param-
eter vectors, respectively. Here

fj:{jil(qi—l)ﬂ,...,i(qi—l)}

i=1 i=1

is an index set corresponding to the sub-matrix X; of X, such that

We now have the following proposition. Here the matrix A;; is the same as
before but the matrices A5, Ags and B are defined in a slightly extended way.
Their explicit definitions can be found in Appendix B.

Proposition 2 For the given numerical or categorical data vectors x;, j =
1,...,p, which satisfy Assumptions 1 and 2, a solution which minimises S*(a, 3, m)
under the constraint (4) is given by & and B, where & = AT A8 + (I —

Af A1)z for an arbitrary p-dimensional vector z, and B 15 the eigenvec-

tor of A with respect to B associated with the largest eigenvalue such that
BTBB = N.

Proposition 2 becomes simpler if no missing values exist. The matrix A be-
comes

1 1
A== (XTX — XT11TX>, (11)
Y% n



and the matrix B becomes

B s =1 © TEm (12

X)X, - XJ11"X;/n j=k,
for ,k=1,...,p.

Corollary 2 If there are no missing values in the data, then a solution is
gien by

&y = ap — sﬂ@(«ﬂg), J=1...,p,
for an arbitrary constant ag, where a_r::g = 17X;/n. That for the scales is given
by B which is the eigenvector of A in (11) with respect to B in (12) associated
with the largest eigenvalue such that 3TBB = N.

Example 2 For the iris data, the data matriz is
X - <X17 Lo, L3, Ly, .’.C5)

where Xy is the same 150 x 2 matrixz as in Example 1 for Species and xs, T3, x4
and xs are the numerical data vectors for Sepal Length, Sepal Width, Petal
Length and Petal Width, respectively. Using Corollary 2, we find that

B = (50.57710, 73.10587, 32.61262, —34.70152, 17.55146, 39.71478)T
and
a = (—41.22766, —190.56643, 106.09412, —65.95838, —47.63126)T

provided that ag = 0. Then the coordinate vectors are written as, for example,

5771
y1 = (—41.22766)1 + X (50 577 0) |

1
73.10587 (13)

and yo = (—190.56643)1 + (32.61262)xy. Equation (13) implies that the cat-
egories Setosa, Versicolor and Virginica are located at ay = —41.22766, d; +
01 = 9.349441 and oy + P = 31.878215, respectively, on the axis for Species.

2.3 General Result

Now, we have to consider the case in which some of the data vectors are ordered
categorical. Clearly, the order of the categories within an ordered categorical
data vector has to be retained on the corresponding axis of the textile plot,
otherwise the plot will mislead the user.

10



A natural choice of a contrast matrix C for an ordered categorical data vector
with ¢ categories is
1, 1>
Cij = (14>
0, otherwise,

fori=1,...,qand j =1,...,q—1, as is illustrated in the following example.

Example 3 Consider an ordered categorical data vector = (Small, Medium,
Large, Medium)®. Then the coordinate vector can be written as

00 a

10 a4+
y=al+ <ﬁ1>= b

11 | \F2 a+ B+ B

10 a+ 3

where B1, 02 < 0 or Bi,0: > 0 to retain the order of the categories on the
corresponding axis of the textile plot.

As noted before, the choice of contrast does not affect the result even when
an ordered categorical data vector is present in the data. However it is not as
advantageous to use a contrast other than C in (14), since the constraint on
the scale parameters would not be as simple as in Example 3. Hereafter we
assume that the contrast matrix for ordered categorical data vector is always
C as given in (14).

To simplify the problem, we assume that the first r data vectors x;, k =
1,...,r are ordered categorical and the rest, xx, k = r + 1,...,p are other
types of data vectors. Then the problem is to minimise

fla,8) =a"Aja—2a"ApB + B A»B (15)
under the equality constraint
B8'BB =N (16)
together with the inequality constraints

B(ﬂk)ZOOI‘ B(‘ﬂk)g()a ]{f:]_,...,”f’. (]‘7>

Here, the matrices A1, A1o and Aoy are the same matrices as before and >
or < are used as element-wise inequalities for two vectors. That is, u > v for
w,veRVifu >v;, foralli=1,..., k.

By noting that & is still given as in (7), we obtain the following theorem by

11



applying a well-known constrained minimisation result (see e.g. Proposition
1.29 in Bertsekas [4]).

Theorem 1 If the given data vectors satisfy Assumptions 1 and 2, then a
solution which minimises S*(a, 3, m) under the constraints (16) and (17) is
given by & = AT AB+(I—Af A1)z for an arbitrary p-dimensional vector z.
That for the scales, B, can be obtained by selecting an index set Sy C Up_; Fx
such that

(1) B(A) = 0, and B(.FE) is an eigenvector of A(IE, IE) with respect to
B(.7¢, IE) associated with the largest eigenvalue X, such that B(.7E)B(IE, IE)
B(FE) = N, where I = 7\ %,

(2) either B(,ﬂk N25) >0 or B(ﬂk N.J5) <0 is satisfied for k=1,...,r,

for which the \ is the largest.
A straight-forward algorithm to find the solution B is the following.

(1) Find all possible index sets {.#} for which conditions (1) and (2) are
satisfied.

(2) Find an .Z; in {.%} for which X is the largest.

(3) Then B(.#;) is the solution.

Further sophistication of the algorithm is possible in various ways but we leave
that for future investigation.

3 Further Details of the Textile Plot

In the previous section we developed several proposals for determining an
optimal choice of locations and scales. We are now in a position to plot the
points of y; on a parallel axis j = 1,...,p using a common coordinate system.
However, as Cleveland [5] states “A graphical method is successful only if the
decoding process from the given graphic by the viewer is effective”. Thus, our
aim in designing the textile plot was not only to graphically represent the
data points themselves but also to assist the user in their interpretation of the
data. With this aim in mind, it would appear reasonable to display any other
information that might be helpful to the user in the textile plot together with
the data.

Here we introduce two technical terms convenient for describing the design
principle of the textile plot. Since a textile is a fabric produced by weaving
warps together with wefts, we call the display of each data vector together with
any necessary information a warp, and the connected straight lines defining
the trajectory of a case a weft.

12
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Fig. 3. Different forms of warp.
3.1 Warps

A warp in the textile plot is an integrative display of the information associated
with a data vector. Clearly, data type is one of the important attributes of any
data vector. The distinction between merely being quantitative or qualitative
is generally not enough for an informative display, particularly in the case of
high dimensional data. We first classify a data vector as being numerical or
non-numerical and further classify the former as being continuous or discrete.
The latter might be further classified as being ordered categorical, unordered
categorical or logical. For simplicity, in what follows we restrict our attention

to these five main data types.

Figure 3 illustrates how points are displayed on a warp for each data type. In
the case of numerical data, the indication of the possible values aids in the
understanding of the data. The possible values are indicated by a continuous
vertical line if the data are continuous, and by tick-marks otherwise. The
maximum and minimum possible values are identified at the ends of each
axis. This enables the user to understand the background to the data beyond
the distinction of merely being continuous or discrete. An arrowhead placed
on either end of the warp indicates the direction of “low” to “high” for each
coordinate axis. It points upwards on the jth warp if 3; > 0, and downwards
otherwise. If there is a point that is repeated, a circle centred at the point
coordinates is placed on each warp with an area proportional to the number of
repeated values at that point. A similar idea to this was introduced by Parabox

13
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Fig. 4. Display of the warps for the iris data

[21] for a parallel coordinate plot designed to accommodate categorical data.
An alternative would be to place a histogram on each warp as in [14]. However,
the plot soon becomes illegible as the dimensionality of the data increases due
to the fact that so many histograms have to be positioned on the plot. Also,
class intervals have to be subjectively chosen for the histograms when the data
are continuous. We chose to use circles because of their simplicity and because
they do not involve any of the subjectivity inherent in the use of histograms.
The minimum and maximum of a data vector are also indicated by the figures
which appear to the left of each axis.

In the case of non-numerical data, each category can be identified by its cat-
egory name placed on the coordinate. Also, relative frequencies are indicated
by the area of a circle. Clearly, this design is consistent with that for numeri-
cal data. Zero frequency categories are indicated at the top of the display by
their category names without circles. This is similar to the display of possible
values in the case of discrete data. If the vector is ordered categorical then the
categories are connected by a sequence of arrows to indicate their natural or-
der. If the vector is logical, the circle for FALSE is filled to distinguish logical
from categorical.

In all cases, missing values are indicated using circles, the areas of which are
proportional to the number of missing values, placed at the bottom of each
warp. Each warp is tagged with a label and its units (in the case of numerical
data). The display design described here is clearly only one of many other
possible choices. For example, points for continuous data could be displayed
using a histogram, for instance. However, we decided to use circles for the
points so as to maintain consistency over different data types. Figure 4 displays

14



Fig. 5. Wefts overlaid on the display of the warps for the iris data.

the five warps for the iris data.

Care needs to be taken if some of the vectors are identifying (ID) vectors,
since these are categorical data vectors for which the values are all distinct.
Any ID vector can be excluded in the computation of the location and scales
since the coordinate vector of ID vectors is always equal to m except for a
constant shift and multiplication, as is proved in Appendix B. The display of
the ID warp is optional. If it is required, m is used as the coordinate vector
for the ID warp. We can see how horizontalised the wefts are from the ideal
coordinates.

3.2 Wefts

A weft on the textile plot is traced out by the linked line segments for each case,
although the segments will be disconnected if there are any missing values.
Figure 5 is a textile plot of the iris data where all the wefts are overlaid on
Figure 4. The display of wefts is simpler than that of warps, since each weft
corresponds to just one individual case. Various attributes of a weft, such as
its width, line type, colour etc, can be introduced to distinguish certain cases
from others, but this is probably better done through interaction with the user.
We leave such design enhancements and the construction of a user friendly
environment with which to produce textile plots to further investigation.

15



3.8 Order of Warps

Different orders for the warps displayed in a textile plot give the user different
impressions of the data. Certainly, it is rather rare that a natural order of
the warps might previously be known. In all other scenarios, it would appear
reasonable to order warps using some objective criterion. In the context of the
parallel coordinate plot, Ankerst et al. [2] proposed a method that maximises
the sum of similarity measures between two adjacent axes on a parallel coordi-
nate plot. A more general discussion of this problem and its potential solution
can be found in Yang et al. [22]. They proposed two dimension-ordering tech-
niques; similarity-oriented dimension ordering based on the similarity mea-
sures in Ankerst et al. and importance-oriented dimension ordering based on
the result of principal component analysis. These two approaches are also
implemented in the DAVIS [6] software.

However, the situation is somewhat different in the textile plot. We have al-
ready introduced a criterion for choosing locations and scales, and the order
of the warps can also be determined using the same criterion. Here we propose
two different methods for determining the order of the warps. One is based
on the distance to the mean vector m, and the other is based on the absolute
deviations between two adjacent warps. The former is closely related to the
importance-oriented dimension ordering and is good for the classification of
wefts. The latter is related to the similarity-oriented dimension ordering and
is good for the classification of warps.

3.3.1 Distance to the Mean Vector (Classification of Wefts)

The distances [|y; — m||w,/||w;l|, j = 1,...,p, can be used to determine
the order of the warps, since the locations and scales are chosen to minimise

iy — meUJ The normalisation by ||lw;|| reflects the effective number of
observations. If the warps are arranged from left to right according to ascend-
ing distance, the leftmost warps are then considered to be the most important
warps for the classification of wefts. This is because the mean vector m essen-
tially gives us a set of ideal coordinates for each case. The warps in Figure 2
are ordered by this criterion and show that the wefts passing through warps
Petal Length, Species and Petal Width are roughly classified into three groups.
This suggests that the criterion might be useful for classification of the wefts
or, equivalently, the cases.

3.3.2  Distance Between Warps (Classification of Warps)

A natural choice of distance between two adjacent warps on the textile plot
is the mean absolute deviation .7, |y;; — vik|/n where the jth and the kth
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Fig. 6. Textile plot for the iris data with the locations of the warps ordered using a
clustering algorithm.

warps are adjacent. Allowing for missing values, this distance becomes

1 n
Z wijwik’yij - yik"
i=1

w] wy

One way of ordering the warps is to apply a clustering algorithm based on
the above distances. For example, the ordered single end-linkage clustering
algorithm proposed by Hurley [9] can be employed, although it was originally
proposed for the rearrangement of the axes on a parallel coordinate plot. This
algorithm provides an order for the warps together with a dendrogram. Figure
6 shows a textile plot of the iris data in which the ordering of the warps was
determined using this particular clustering algorithm. It can be seen that the
most similar warps are Species and Petal Length, followed by Petal Width. The
distance between two adjacent warps on the dendrogram is indicated by the
height of a merge of two clusters of warps.

4 Significant Features of the Textile Plot

Two important features which are sometimes found on a textile plot are a
unique knot on a warp and completely parallel wefts between two adjacent
warps, as illustrated in Figure 7. A knot is a point on a warp where all the
wefts intersect, indicating that the warp is unrelated to the others. They arise

17



j—1"warp  Pwarp  j+H1Pwarp JMwarp 1 warp
Fig. 7. Stylised representations of a unique knot on the jth warp (left) and com-
pletely parallel wefts for the jth and (j + 1)st warps (right).

as a result of choosing the locations and scales so that all wefts are aligned as
horizontally as possible, and are a feature specific to the textile plot. To clarify
the conditions under which they are produced, we will prove that they occur
when a data vector is essentially orthogonal to the other data vectors in the
textile plot. Parallel wefts occur when all the wefts in two adjacent warps are
horizontally aligned. It is intuitively clear that parallel wefts imply the linear
dependence of two numerical data vectors, but the converse is not so clear.
Later in this section we will discuss the conditions for parallel wefts, including
the case where categorical data vectors are involved.

Unique knots and complete parallel wefts, therefore, indicate two extremes; a
form of independence on the one hand and perfect linear dependence on the
other. In practice, we can omit such warps to simplify the textile plot, as we
illustrate in Section 5.2.

To simplify things, we will assume that there are no missing values and no
ordered categorical data vectors in the given data set. Under Assumption 2
in Section 2.1, we can further assume that the data matrices X;, 7 =1,...,p
are normalised so that, without loss of generality,

1"X; =0 and X[X;=1I, j=1,...,p (18)

Note that the textile plot is invariant under location and scale shifts of the
original data vector or of the choice of contrasts. We also assume that ag = 0 in
Corollary 2 since the choice of oy does not change the appearance of the textile
plot. This assumption implies that the mean vector m is always orthogonal
to the vector 1.
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4.1 Unique Knot on a Warp

A unique knot on the jth warp is produced when the selected scale parameter
is zero, that is, B(.#;) = 0. Define

X_ ;= (Xb D CEETD, CTE T 7Xp)7

which is now an n x ¢ matrix with ¢ = Q — (¢; — 1). As we will now show, the
singular value decomposition UDV7 of X_; plays an important role in the
occurrence of a unique knot. Here the diagonal elements of D = diag(d;; j =
1,...,q) are singular values arranged in the order dy > dy > --- > d, > 0,
and U = (uy,...,u,) and V = (vy,...,v,) are column-orthogonal matrices.

Theorem 2 Assume that there are no missing values in X and no ordered
categorical data vectors in the data. Under the assumption that the multiplicity
of the largest singular value dy of X_; is 1, a necessary and sufficient condition
for a unique knot to occur on the jth warp is that

X u; =0 (19)

and all eigenvalues of X]TUAUTXj are less than d? — 1, where

d2 d2
A = di 2 _ . .
1ag<0’ & — & ’d%—dg>

The proof of Theorem 2 is given in Appendix C.

Note that w; is proportional to the mean vector m_; for the data matrix X_;,
around which all coordinate vectors on the textile plot of X_; are aligned.
Therefore, condition (19) specifies that any column vector of X; is orthogonal
to m_;, which is the mean vector with the jth element omitted. However, as
the theorem tells us, orthogonality is not enough to produce a unique knot.
The projected size of X; on the range space of X_; has to be small enough
relative to the size of X_;.

Note that 2

d2 d2
holds true for any (g; — 1)-dimensional vector z. The following corollary gives
us a simplified sufficient condition for the occurrence of a unique knot on a
warp.

2" (XJUAU'X;)z 2z (XJUUTX;)z

Corollary 3 Under the same assumption as in Theorem 2, a sufficient con-
dition for the occurrence of a unique knot on the jth warp is that

Xjrul =0
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and all eigenvalues of XJTUUTXj are less than (d? — d3)(d3 —1)/d3.

The sufficient condition given in Corollary 3 becomes simpler if the original
data vector x; for the jth warp is numerical. Then X; in Corollary 3 is a
vector and X]TUUTXJ» has a scalar value. Therefore, it is easy to check if
XTu; =0 and X]UU'X; < (df —d3)(d} —1)/d3. Even if the jth data vector
is not numerical, the following example gives us a simple sufficient condition,
since all the eigenvalues of XJTUUTXJ» are less than or equal to 1.

If X?ul = 0, a sufficient condition for a unique knot to occur on the jth warp
is that d? > d3+ 1. As is shown in Appendix D, this condition is equivalent to

1 R ~
p— 2 - E‘Sz(a—jalg—jam—j) > d% Z dg 2 T Z dz’

where a_; and ,é_j are the solutions for the location and scale parameter
vectors, respectively, for X_;. This condition is satisfied when all of the wefts
in the textile plot of X_; are well-aligned.

If we make the stronger assumption that XJTX_j = O, then XJTUAUTXj =0
so that X?ul = 0. The following gives us a simpler condition for a unique
knot. If X]TX,J- = O, a unique knot is always produced on the jth warp.

As is seen from the proof of Lemma 1 or of Theorem 2 given in Appendix C,
all the wefts will intersect near a point if X]TX_j is close to O because of the
continuity of the eigenvalue problem.

4.2 Completely Parallel Wefts

Completely parallel wefts between the jth and the (j+ 1)st warps occur when
the coordinate vectors y; and y;;; are identical. To see this, it is enough to
consider the case when no unique knot occurs on either of the two warps. In
the case of two numerical data vectors, a necessary and sufficient condition
for completely parallel wefts is that the data vectors are identical except for
differences in locations and scales. Here, the necessary part is trivial, but
the sufficiency requires proving. To do so, one can consider, without loss of
generality, the case where X; = £Xj. Then y; = y; follows from the fact
that 8(.%;) = £6(.%), since 3 is the solution of AB8 = A3 with B = I and
A = (X*X)/p in this case.

When the two data vectors are both categorical, it is hard to derive a necessary

and sufficient condition. However, a sufficient condition is that there is a one-
to-one association between the categories of the two vectors. That is, the
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Fig. 8. Textile plot for the automobile data.

two data vectors are identical except for the difference in the labels for the
categories.

All wefts between two warps will be reasonably well aligned horizontally if the
projection of the mean vector m on the range space of X is close to that of
X +1, again because of the continuity of the eigenvalues.

5 Practical Examples

In this section we present two examples of the use of the textile plot. The
first considers the automobile data set used as example data in S-Plus [17].
Within this data set there are three types of data vector: numerical, unordered
and ordered categorical. The second example considers the body measurement
data from [11] for 318 Japanese people. In this data set, 54 variables (49 body
measurements and 5 other attributes) were recorded for each subject.

5.1 Automobile Data

Figure 8 presents a textile plot of the automobile data in which the warps
have been ordered by their distances to the mean vector as described in Sec-
tion 3.3.1. In this data set there are five numerical data vectors (Weight,
Mileage, Displacement, Horse Power and Price), three unordered categorical
data vectors (Country, Manufacturer and Type) and an ordered categorical
data vector (Reliability). Each data vector contains measurements made on
60 cars. Note that the scale used on the Mileage warp in Figure 8 runs in
the opposite direction to the scales of the other numerical variables. As can
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Fig. 9. Textile plot of the automobile data.

be seen, the wefts passing through this warp confirm the nonlinear pattern.
Since gallons per mile is as sensible a measure of gas consumption as miles per
gallon, it would appear reasonable to attempt to straighten the relationship
by applying an inverse transformation to Mileage.

Figure 9 shows the equivalent textile plot obtained after transforming the vari-
able Mileage into the variable Fuel using the inverse transformation referred
to above. As can be seen from the dendrogram, the nine warps are classified
into two groups.

The first group consists of the warps Reliability, Country and Manufacturer.
A significant feature of this group is that the five categories of Reliability are
clustered into two. One is formed from the categories Much Worse, Worse
and Average and the other from the categories Better and Much Better. This
implies that, at least for these data, only two categories are actually required
in order to describe the reliability of a car. One can also see clearly how the
reliability of a car is related with the Country in which it was manufactured
and the Manufacturer. The plot appears to suggest that cars manufactured
in Korea and Mexico are more reliable. Nevertheless, one has to be somewhat
cautious with this interpretation because the number of cars manufactured
in these two countries is far smaller than the numbers of cars manufactured
in other countries. Note that the number of observations for each country is
indicated by the area of each circle on the Country warp.

The second group is formed from the warps Type, Weight, Fuel, Displacement,
Horse Power and Price. It can also be seen that the six warps are further
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classified into two subgroups; one comprising of Type, Weight and Fuel, and
the other made up from Displacement, Horse Power and Price. The warps in
the first of these two subgroups are related to the size of a car and those in
the latter subgroup are related to the size of engine and the price of a car.

5.2  Body Measurement Data

As mentioned previously, our second data set is comprised of 49 different body
measurements and 5 other attributes collected for 318 Japanese people. The
names of all 54 data vectors are listed in Table 1. What each of the 49 body
measurements, other than Body Mass, represents is identified in Figure 10,
where the numbers refer to those used to identify the data vectors in Table 1.

Figure 11 is a textile plot of the body measurement data where warps are
ordered by their distances to the mean vector as described in Section 3.3.1.
The representations of the three right most warps (School, Occupation and
Race) indicate that these variables take only one value each. Moving left, the
next two warps (Bicristal Breadth and Toe I Angle) come close to having a
unique knot. It is therefore advisable to delete such warps from the textile
plot since they are unable to discriminate between subjects. Clearly, then,
textile plots with warps ordered by distance to the mean vector are useful for
identifying warps that are redundant.

Figure 12 is a textile plot for the remaining 49 warps once the five most
extreme warps to the right of the previous textile plot where removed from
the analysis. In this plot the warps were ordered using the clustering algorithm
described in Section 3.3.2. It can be seen from the dendrogram towards the
top of the textile plot that the warps are classified into three main groups: the
first formed by the first 11 warps on the left of the plot, the second by the next
17 warps, and the third by the last 21 warps. Figures 13, 14 and 15 are textile
plots for each of these three groups of warps. These figures provide clearer
representations of the relationships that exist between the warps within each

group.

In Figure 13 the most extreme four warps on the left (20, 39, 40 and 47) are
measurements of skinfold thickness at four points on the body. These variables
are identified using asterisks in Figure 10. The remaining seven warps are mea-
surements related to Gender. It is known that structural differences between
males and females occur mainly in the shoulders and hands, but the plot
also shows that these differences also appear in Bicondylar Humerus, Medial
Malleolus Height and Lateral Malleolus Height. 1t is interesting to note that
the scales for the four most extreme warps on the left run in the opposite di-
rection to those for the other warps. This is simply because the measurements
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Table 1

Variables associated with the body measurement data

No. Data Vector No. Data Vector

1 Gender 28  Hand Breadth

2 Age 29  Hand Length From Crease

3 School 30  Hand Length From Stylion

4 Occupation 31  Hand Thickness

5 Race 32  Heel Breadth

6 Body Mass 33  Hip Circumference

7 Stature 34  Instep Length

8 Iliac Spine Height Standing 35  Lateral Epicondyle Height

9 Shoulder (Biacromial) Breadth ~ 36  Lateral Malleolus Height

10  Head Length 37  Maximum Body Height

11  Head Breadth 38  Medial Malleolus Height

12 Chest Circumference 39  Subscapular Skinfold Thickness
13 Waist Circumference 40  Suprailiac Skinfold Thickness
14 Calf Circumference 41  Suprasternal Height

15 Ball Angle 42 Symphyseal Height

16  Ball Breadth 43  Thigh Circumference

17 Bicondylar Femur 44  Toe I Angle

18  Bicondylar Humerus 45  Toe V Angle

19  Bicristal Breadth 46  Total Head Height

20  Calf Skinfold Thickness 47  Triceps Skinfold Thickness
21 Cristal Height 48  Trochanterion Height

22 Fibular Instep Length 49  Upper Arm Circumference
23 Foot Breadth 50  Upper Arm Circumference flexed
24  Foot Circumference 51  Upper Arm Length

25  Foot Length 52  Upper Limb Length

26  Forearm Circumference 53  Waist Breadth

27  Forearm Length 54  Waist Height
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Fig. 10. Identification of the characteristics of the body measured.

for skinfold thickness tend to be higher for females.

In Figure 14, the three most extreme warps on the left are arm measurements
and the next nine warps are related to height and leg length. The remaining five
warps are related to foot or hand length. As a whole, the wefts in this textile
plot are almost parallel because the measurements considered are strongly
related to human height.

In Figure 15, the subgroup on the left consists of warps related to circumfer-
ence measurements and weight. The subgroup on the right consists of warps
related to foot and head measurements, and age. In this data set, the ages of
examinees are clustered into two groups; one young (around 20 years old) and
the other old (around 70), which is clearly evident from an inspection of the
warp for Age. As expected, foot and head measurements reflect the different
age cohorts of the people considered. Note that Ball Angle manifests some-
thing close to a unique knot, which indicates that it is orthogonal to the other
measurements and is unable to discriminate reliably between subjects.

The above observations are preliminary ones made after an initial exploratory

analysis of the data based on a consideration of textile plots alone. Clearly,
further investigation would be required to probe the issues raised in more
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Fig. 11. Textile plot for the full body measurement data set.
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are ordered using the ordered single end-linkage clustering algorithm.
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Fig. 13. Textile plot for the first group of 11 warps identified in the body measure-
ment data set.

detail. Thus, the great value of the textile plot is that it can provide the user
with informative graphical representations of high dimensional data which will
often suggest potential avenues for subsequent further exploratory, or even
confirmatory, data analysis.

6 Computational Aspects

6.1 Scalability

The most time consuming part of the computation of the textile plot is to find
the eigenvector of A with respect to B, as in Proposition 1, and calculate the
coordinate vectors y;, j = 1,...,p. Figure 16 provides a graphical summary
of the computer time required to obtain the coordinate vectors as a function
of the number of data vectors, p, and cases, n. This diagram corresponds to
the situation in which all the data vectors are numeric. The program used
to perform the calculations was written in C and incorporated an algorithm
for solving the generalised eigenvalue problem available from Lapack [13]. The
machine used was a PC with a Xeon 3.2 GHz dual-core processor with 2GB of
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Fig. 14. Textile plot for the second group of 17 warps identified in the body mea-
surement data set.

memory. From this diagram it can be seen that the computational burden is
very light indeed for p-values up to order 100 and n-values up to order 1000.
Clearly, for larger values of p and n the time required to perform the calcu-
lations can become considerably larger. However, note that for data sets with
up to 100 dimensions and 10000 cases, the computations can be performed
in under four seconds of computer time. Since there is no obvious way of de-
creasing the computational burden associated with computing the coordinate
vectors for the textile plot, we hope that Moore’s law continues to hold.

6.2 Inequality constraint

We are currently searching for an improved algorithm with which to find a
solution when the data include ordered categorical data vectors. As described
in Theorem 1, optimisation with inequality as well as equality constraints is
necessary in order to find all those index sets, the .%’s, from which to select
an optimal .#,. The current implementation is to search all of the .%;’s, but
this is computationally expensive and the burden of computation increases
with the number of ordered categorical data vectors.
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Fig. 16. Time required to compute the coordinate vectors as a function of p and n.
7 The Textile Plot and the Optimised Parallel Coordinate Plot

The optimised parallel coordinate plot was proposed by Michailidis and de
Leeuw [12] in the context of homogeneity analysis where the main objective
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is to find quantified vectors y;, 7 = 1,...,p, for given categorical data vectors
xj,j =1,...,p. The optimised parallel coordinate plot is a parallel coordinate
plot of the resulting quantified vectors in which all the axes share a common
coordinate system.

Let x;, j = 1,...,p, be unordered categorical data vectors with no missing
values and Z;, 7 = 1,...,p, be the indicator matrices for x; defined as in
Section 2.2. The quantified vectors y; = Z;v;, j = 1,...,p, are defined so as
to minimise

1 p
o (Y, ¥ €)=~ D€~y
Pz

under the constraint
1 _
Var(€) = - [l¢ — €1 = 1,

where £ = 37| &;/n. In the same way as in Section 2.1, the minimisation of
2(Y1s - -+, Yp, &) With respect to € yields the solution & = m. Therefore, the
problem is to minimise

p
po2(v, Y m) = Y m =yl
=1

p p
=> lly; =107 = plm —m1|* + > [|5.,1 — m1|?, (20)
j=1

J=1

under the constraint ||m — m1||?> = n, where m = Y, m;/n. Recalling the
relation

from (10), we see that the last term on the right hand side of (20) depends
only on the location parameter vector @ and it vanishes when « is taken to
be & as given in Corollary 2. Thus the problem is to find 3 so as to minimise
Y01 ly; — 541> = B"Bp under the constraint pllm —m1|]* = B"AB = N.
In contrast, for the textile plot the problem is to find 3 so as to maximise
BTAB under the constraint 3'BB3 = N. However, it is clear that the two
problems above yield the same solution ﬁ since the eigenvector of A with
respect to B associated with the largest eigenvalue is equal to the eigenvector
of B with respect to A associated with the smallest eigenvalue.

Thus we see that the optimised parallel coordinate plot and the textile plot
yield the same picture in the restricted case in which all the data vectors are
categorical with no missing values. However, the aim of homogeneity analysis
is the quantification of categorical data vectors, whereas the motivation for
the textile plot is as an aid to the visualisation and exploration of the data.
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8 Concluding Remarks

We have proposed a new data visualisation technique, which we have named
the textile plot, with the hope that it will be adopted as a fundamental tool
for exploring for relationships within high dimensional data sets.

The textile plot, whose name was derived by analogy to the production of
a fabric in which warp and weft yarns are interwoven, is a generalisation of
the parallel coordinate plot. Data vectors of any type (numerical, unordered
or ordered categorical) can be displayed on warps in a concise way so as to
provide valuable graphical and numerical summary of the data. The wefts,
which trace out the trajectory of each case, are aligned as horizontally as
possible so as to accentuate the differences between cases. Two important
features of the textile plot, unique knots and completely parallel wefts, are
also characterised by simple conditions.

It is important to develop an efficient algorithm for very high dimensional data
sets or data sets containing a large number of ordered categorical data vectors.
The introduction of dynamic or interactive displays such as those mentioned
in [6], [18] or [19] would also be important improvements to the user interface.
Such developments are left for further investigation.
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Appendix A. Proof of Corollary 1

Note that

Al = nlen = 71(1 - ;11T>
and

Ap=-n <diag(5:) - ;I:ET>,
where = (Z.1,...,%.,)7. Then
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a=ALALB+ (T1-Af ALz
1. . 1
= *Am,@ + *11TZ
n p
1/17X8 ., .
=- +1'z|1—x-3
p n
:Oé(]].—ii°B

holds ture for any constant «.

On the other hand,

B=By (21)
holds true, where = is the eigenvector of the sample correlation matrix of the
x;’s associated with the largest eigenvalue and [|7||* = N = np. Note that

AB = A\na B3

is equivalent to
1 1
(BT2AB™2)y = ApaxY
and pB_%AB_% is the sample correlation matrix. Therefore (21) can be writ-

ten as
A 1

|l — 241

Appendix B. The matrices in Proposition 2

The matrix Ajs is a p X @) matrix with

w] (wy, - Xp/w) j#k,

w (wy - Xp/w) — wl X j =k,

A12<j7 jk) -

for 5,k =1,...,p. The matrices Ay, and B are () x () matrices with

—(w; - X;) " (wy, - Xy /w) j#k,
Ag(Ij Fi) = § —(w; - X)) (wy - X /w) =k
+Xjwjw] X,/ (17w;) T
and
O J#£k,
B(J), ) =1 X (w; - X;) —
~X wjwlX,;/(1"w;) T



for j,k =1,...,p. Here the notation - and / is used in a slightly extended way

to accommodate matrices as well as vectors; that is, v-Z = (v-21,...,v- 2,)
and Z/v = (z1/v,...,z./v) for an n-dimensional vector v and an n x r
dimensional matrix Z = (z1,..., 2,).

Appendix C. The coordinate vector of a categorical data vector with
all distinct values

We can encode a categorical data vector x; containing values which are all
distinct into an n x (n — 1) matrix X; by choosing a proper encoding matrix
such that 17X; = 0. Then we have

A(I 2)B=An{1,....p}, 7)) AL ALB — A, 7)
=Ap({L,....p}, 7)) & — An(S, 7)B
:X;‘-F(wl/w, oL w,/w)a+ X]T(wl Xy /w, . w, - X, /w)B

p A
k=1

p
=Xj 3w yi/w
k=1

= X]Tm

and

B(.7;, 7)B=B(, 7)B(5)
=X; X;8(4)
= X?yja
because B is a block diagonal matrix. Therefore A,@ = S\BB implies that
T A\~ T
X;m =X, yj,

where ) is the matrix eigenvalue given in Proposition 1. Note that
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p
1"m =17 Z wy, + Y/ W
k=1

p A
k=1
=17 (w, /w, ..., w,/w)é + 17 (w, - X /w, ..., w, - X,/w)3

:ndj —All(j,{l,...,p})d+A12(j7 j)ﬁ
:nézj = 1T’yj,

and hence we obtain the desired result

1 _ _
Y = X(m - 9,;1)+g,1.

Appendix D. Proof of Theorem 2

Before giving the proof of Theorem 2, we need the following lemma.

Consider a ) X ) symmetric matrix C, partitioned as

C, C
c=| 7 (22)
Cly Co
where Cas is a ¢ X ¢ sub matrix for some ¢ < ). We also denote the eigenvalues
of Cyy in descending order as Aq,..., A, and their corresponding eigenvectors

as pi, ..., Pq. Then the following lemma holds true.

Lemma 1 Assume that the largest eigenvalue Ay of Cao has no multiplicity.
Let 4 be that v which mazimises vI'C~y under the constraint ||| = 1. A
necessary and sufficient condition for the first Q) — q elements of % to be 0 is
that

Clgpl =0 (23)
and
Clg()\ll — ng)—i_C{z < )\1:[ — Cll (24)

holds true in the sense of positive definiteness.

PROOF. We first partition the vector v as

4!
")/ —
Y2
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in parallel with the partition of C. If 4 is partitioned in a similar way, then
1 is the vector of the first () — ¢ elements of 4 and 4; = 0 is equivalent to

YOy <y Cy=\ (25)
for any « other than 4 such that ||y| =1 .

Condition (25) can be rewritten as

fvir2) <M (26)

for any 0 < & < 1 and any ~; and -, such that ||y, ||* = € and [|y2>* =1 — &,

where
f(v1,72) =1 Ciiy1 +27{ Cia¥a + 73 Coovo.

For fixed 7 and e, the maximum of f(7;,72) with respect to v, under the
constraint ||vs]|> = 1 — ¢ is attained by that ~; for which

()\I - 022)'75k = Csz’Yla (27>

where ) is a Lagrange multiplier. By using the Moore-Penrose inverse of A\I —
Cays, a solution to (27) is given by

= ()\I — C22>+C{2’71. (28)

The Lagrange multiplier A is chosen so that ||4z[|> = 1 —e. We will show that
we can always find a A > Ay for any 0 < ¢ < 1. We see that

plpz )\:)\17

A £ A,

> 2
(AL — Cyp)t = 32
e

and p; = 4 since “, is the eigenvector of Cqy associated with the largest
eigenvalue Ay, and Ci3%5 = A\{Ciop; = 0. Then

|(AT = C)* Clhym||? = Z n C”plpz )Clm

for any A > \y. Since we have already shown that 4, = 0 implies (23), it is
sufficient to show that (25) is equivalent to (24).

By normalising 7, as 41 = v1/||71]|, we can rewrite |v;||> =1 — ¢ as
I'Cupip! CLA

A= \)2
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for A > Ag. The right hand side of (29) is now independent of € and a monotone
decreasing function of A, ranging from oo to 1 for Ay < A < oo. Thus we can
find a A for any given 0 < ¢ < 1. Here, we have employed the convention that
A = o0, that is, 75 = 0, if ¢ = 1. Now,

J(v,7%5) =7 Cuivi + 41 Cr2(AT — Cop)
X<2>\I — CQQ)()\I — 022>+C,{271 < )\1

is equivalent to
. . A - -
7?011’71 < ?1 — 7?012(/\1 — 022>+(2)\I — CQQ)()\I — 022)+C{2’7’1.

Substituting 1/e by the right hand side of (29), we can rewrite the inequality
above as

(A + A — 22 YT Cap; Z-TCT 2
5 CH%<Z 1 )’71 12P:iP; “19aM1

> T 4 AL (30)

We now see that (30) is equivalent to (25) for any 4, with ||| = 1 and A > Xs.
Let us evaluate the lower bound for the right hand side of the inequality (30).
The minimum of the right hand side of (30) for A > A, is attained at A = \;
since the gradient with respect to A is

4 AT TOT A
20— )30 C(l)g\p_,p/\,.)(im%'

=2

Therefore (25) is equivalent to the condition that

ClQPZPZ C?z’?l

’Y1C11’Y1< Z’h ()\1 )\)

=2

+ A (31)

for any 4, with ||41|| = 1. Note that the inequality (31) is equivalent to

Ci Z PZPZ C{Q < Cy1 — ML

Then, it is clear that this is equivalent to (24) if we remember the definition
of the Moore-Penrose inverse (A{I — Cy)t. O

Using the above result, we have the following proof of Theorem 2.

PROOF.
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Note that Bj = 0 is equivalent to the fact that the first ¢; — 1 elements of the
eigenvector of

XTX; XTX_; I X/UDV”
C: pr—
XTij XTjX_j VDU’'X; VvD*V’

are 0 for the largest eigenvalue, since A = C/p and B =T as in (11) and (12).
Then, by applying Lemma 1, we have the necessary and sufficient condition,

XIUDV v =0 and XIX_j;(diT— X, X_;)X".X; < (df — 1)L
The result follows on noting that
XTUDV"v = diX] uy

and

XIX_(di1 - X, X_)XT X; =XTUDV"(diI - VD*V")VDU"X;
=X!UD(d{I - D*)*"DU"X;
=X/UAU'X;. O

Appendix E. Unique knot condition

Using the matrices A and B as in Section 2.2, we can write the sum of squared
deviations as
52(&7 /87 m) = _IBTA/B + ﬁBB

Therefore, the minimum sum of squared deviations becomes

S*(&, B,m)=-\3"BA + GBS

= N(1- M), (32)

where ) is the largest eigenvalue of A with respect to B. Provided there are no
missing values and every sub-matrix of X_; = (Xy,...,X,_1, Xj41,...,X,)
is normalised as in (18), we have A = XTjX_j/p and B = I. Therefore A can

be written as A = d2/(p — 1) where d; is the largest singular value of X_;.
Then we can rewrite (32) for the data matrix X_; into

52(&_-,@_»m_~):n(p—1)<1— & )
3y B=j, M p—1
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We now have 1
d% =p— 1— gSQ(dij? ,j,m,]’).

From the condition d? > d3 + 1, we obtain

1 R A
p—2— ﬁ52(a,j,ﬁ,j, m,j) > d%
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